EEG ocular artifact removal through ARMAX model system identification using extended least squares
نویسندگان
چکیده
منابع مشابه
Ocular Artifact Removal from EEG Using Stationary Wavelet Enhanced ICA
To analyze EEG accurately, it is necessary to remove artifacts from EEG, which gets coupled with signal at the time of recording and can’t be eliminated at preprocessing stage. Ocular artifact is most obvious artifact in EEG. In this paper, a new method using Stationary Wavelet Enhanced Independent Component Analysis with a novel thresholding, is proposed for ocular artifact removal from EEG. P...
متن کاملEEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...
متن کاملIterative Subspace Decomposition for Ocular Artifact Removal from EEG Recordings
In this study, we present a method to remove ocular artifacts from electroencephalographic (EEG) recordings. This method is based on the detection of the EOG activation periods from a reference EOG channel, definition of covariance matrices containing the nonstationary information of the EOG, and applying generalized eigenvalue decomposition (GEVD) onto these matrices to rank the components in ...
متن کاملArtifact Removal from EEG Signals
Electroencephalographic (EEG) recordings are often contaminated with several artifacts.Powerline interference and baseline noise is always present in EEG response of every patient. A number of strategies are available to deal with noise effectively both at the time of EEG recording as well as during preprocessing of recorded data. The aim of the paper is to give an overview of the most common s...
متن کاملModel Predictive Control System Design using ARMAX Identification Method for Car-following Behavior
The control of car following is essential due to its safety and its operational efficiency. For this purpose, this paper builds a model of car following behavior based on ARMAX structure from a real traffic dataset and design a Model Predictive Control (MPC) system. Based on the relative distance and relative acceleration of each instant, the MPC predicts the future behavior of the leader vehic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Information and Systems
سال: 2003
ISSN: 1526-7555,2163-4548
DOI: 10.4310/cis.2003.v3.n1.a2